電磁流量計(jì)與其抗干擾技術(shù)的發(fā)展進(jìn)步密切相關(guān),微處理器硬件和軟件技術(shù)以及采用三直低頻矩形波動(dòng)勵(lì)磁技術(shù)和雙頻矩形波勵(lì)磁技術(shù)以來,明顯地提高了電磁流量計(jì)抗*力和測量精度,擴(kuò)大了電磁流量計(jì)的應(yīng)用領(lǐng)域,改變了人們長期認(rèn)為電磁流量計(jì)測量精度低,抗*力差的概念。
電磁流量計(jì)是基于導(dǎo)電性流體在磁場中運(yùn)動(dòng)所產(chǎn)生的感應(yīng)電勢來推算流體流量的測量儀表,其工作原理是電磁感應(yīng)定律。所以電磁耦合靜電感應(yīng)是電磁流量計(jì)干擾噪聲的首要來源;電磁流量計(jì)供電電源的電壓和頻率波動(dòng)等電源干擾噪聲是電磁流量計(jì)干擾噪聲的第二來源、被測流體介質(zhì)特性產(chǎn)生的電化學(xué)干擾噪聲是電磁流量計(jì)干擾燥聲的第三來源。以上三類干擾噪聲的來源、機(jī)理、特性不同。對電磁流量計(jì)的影響方式不同,相應(yīng)采用的抗干擾措施也不同。作者結(jié)合雙頻矩形波勵(lì)磁智能電磁流量計(jì)的研究工作,著重就智能電磁流量計(jì)抗干擾技術(shù)加以探討,提出一些抗干擾的對策,以供智能儀器研究設(shè)計(jì)參考
1.供電電源干擾性
電磁流量計(jì)采用工頻交流電源供電,電源電壓的幅值和頻率的變化都會(huì)給電磁流量計(jì)帶來電源性干擾噪聲。在智能矩形波勵(lì)磁電磁流量計(jì)中采用寬脈沖采樣技術(shù),其脈沖寬度為工頻周期的整數(shù)倍,具同步于工頻周期,以*消除工頻干擾,但前提條件是工頻噪聲干擾基本不變。當(dāng)電源電壓的頻率波動(dòng)時(shí),雖然其波動(dòng)范圍有限,但對電磁流量計(jì)測量精度影響較大。當(dāng)供電電源頻率波動(dòng)時(shí),流量信號(hào)采樣時(shí)使前后的工頻噪聲不能*相同,雖然采用同步勵(lì)磁技術(shù)、同步采樣技術(shù)仍然不能*消除工頻干擾噪聲,必須采用相應(yīng)的頻率補(bǔ)償技術(shù),使勵(lì)磁電流、采樣脈沖,a/d 轉(zhuǎn)換同步于頻率的變化。
2.介質(zhì)本身產(chǎn)生的干擾噪聲
電化學(xué)極化電勢干擾是由于電極感生電動(dòng)勢在兩極極性不同而導(dǎo)致電解質(zhì)在電極表面極化產(chǎn)生。雖然采用正負(fù)交變勵(lì)磁磁場能顯著減弱極化電勢的數(shù)量級(jí),但不能根本上*消除極化電勢干擾。其特性于流體介質(zhì)的性質(zhì)、電極材料性質(zhì)、電極的外形尺寸形狀有關(guān),具有變化緩慢,數(shù)量級(jí)不大等特點(diǎn),如圖2所示流體電化學(xué)電勢干擾及其解決方法。因此采用正負(fù)兩極****變的矩形波勵(lì)磁技術(shù)配合微處理器同步寬脈沖采樣技術(shù),到用微處理器運(yùn)算功能前后兩次采樣值相減消除流量信號(hào)電勢中的極化電勢干擾。另外選擇合適的電極材料(如碳化鎢),設(shè)計(jì)*的電極形狀的尺寸是減小極化電勢的有效方法。 體流動(dòng)噪聲是在測量低導(dǎo)率液體流體流量時(shí),電極的電化學(xué)電勢定期波動(dòng),產(chǎn)生隨流量增加而頻率增加的隨機(jī)干擾噪聲,具有類似泥漿干擾的1/f頻譜特性,因此提高勵(lì)磁頻率有助于降低流體流動(dòng)噪聲的數(shù)量級(jí),以提高電磁流量傳感器測量低導(dǎo)電率流體流量。泥漿干擾是在測量泥漿、纖維漿等液固兩相導(dǎo)電性流體流量時(shí),固體顆?;蛘邭馀莶吝^電極表面時(shí),電極表面的接觸電化學(xué)電勢突然變化,電磁流量傳感器輸出信號(hào)出現(xiàn)尖峰脈沖狀干擾噪聲如圖3 所示。在勵(lì)磁頻率較低時(shí),泥漿干擾的數(shù)量級(jí)較大,高頻時(shí)干擾數(shù)量級(jí)較小,具有1/f的頻譜特性。提高抗泥漿干擾的能力必須采用較高頻率的矩形波勵(lì)磁,以提高電磁流量傳感器輸出的信噪比,但會(huì)犧牲電磁流量計(jì)的零點(diǎn)穩(wěn)定性。另外也可采用流量信號(hào)變化率限制方法以剔除脈沖干擾對電磁流量計(jì)的影響,但會(huì)犧牲儀表的響應(yīng)速度。